Date: 25.01.2026
Pixtral 12b CUDA low memory GPU PyTorch Test
Test environment
- Workstation 40 GB RAM, 500GB SSD, 750W Power supply
- Ubuntu 24.04 LTS HWE Kernel
- Install python 3.12
My test environment: HP Z440 + NVIDIA RTX 3090
Ubuntu preparation
sudo apt-get install --install-recommends linux-generic-hwe-24.04
hwe-support-status --verbose
sudo apt dist-upgrade
sudo reboot
Driver setup
- Install drivers nvidia-driver-570
sudo apt install nvidia-driver-570 clinfo
sudo reboot
- Check installation
nvidia-smi
clinfo
- Install dev tools
sudo apt install -y python3-venv python3-dev git git-lfs
Dry-run Pixtral 12b
- Preapre python environment for CUDA:
mkdir -p ~/llm && cd ~/llm
python3 -m venv .venv_llm_pixtral
source ./.venv_llm_pixtral/bin/activate
python -m pip install --upgrade pip
pip install "torch==2.7.1" "torchvision==0.22.1" "torchaudio==2.7.1" --index-url https://download.pytorch.org/whl/cu128
pip install transformers accelerate
- Get the Pixtral 12b model:
git lfs install
git clone https://huggingface.co/mistral-community/pixtral-12b pixtral
-
Put test picture to
/home/sysadmin/llm/pixtral/2.jpeg -
Create script test_bad_cuda_pixtral.py:
from transformers import AutoProcessor, LlavaForConditionalGeneration, set_seed
import torch
from PIL import Image
print("GPU available:", torch.cuda.is_available())
print("GPU name:", torch.cuda.get_device_name(0))
model_path = "/home/sysadmin/llm/pixtral"
seed = torch.seed() % (2**32)
print(f"Using seed: {seed}")
set_seed(seed)
processor = AutoProcessor.from_pretrained(model_path)
model = LlavaForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map="auto",
)
img_links = [
"/home/sysadmin/llm/pixtral/2.jpeg",
]
prompt = "<s>[INST]Describe the image.\n[IMG][/INST]"
inputs = processor(text=prompt,
images=img_links,
return_tensors="pt"
)
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
generate_ids = model.generate(
**inputs,
max_new_tokens=1000, #32768,
temperature=0.7,
top_p=0.9,
do_sample=True,
# repetition loop prevention
repetition_penalty=1.1,
no_repeat_ngram_size=4)
print(processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0])
- Run test
python test_bad_cuda_pixtral.py