LLM Laboratory

Date: 26.12.2025

CUDA PyTorch BitsAndBytes FlashAttention2 Mixtral-8x7B Test

Requirments

Test environment

My test environment: HP Z440 + NVIDIA RTX 3090

Ubuntu preparation

sudo apt-get install --install-recommends linux-generic-hwe-24.04
hwe-support-status --verbose
sudo apt dist-upgrade
sudo reboot

Driver setup

sudo apt install nvidia-driver-570 clinfo
sudo reboot
wget https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_570.86.10_linux.run
sudo sh cuda_12.8.0_570.86.10_linux.run --toolkit --samples

echo 'export PATH=/usr/local/cuda-12.8/bin:$PATH' | sudo tee /etc/profile.d/cuda.sh
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-12.8/lib64:$LD_LIBRARY_PATH' | sudo tee -a /etc/profile.d/cuda.sh
echo 'export CUDA_HOME=/usr/local/cuda-12.8' | sudo tee -a /etc/profile.d/cuda.sh
source /etc/profile.d/cuda.sh
nvidia-smi
clinfo
nvcc --version

Install PyTorch

mkdir -p ~/llm && cd ~/llm
python3 -m venv .venv_llm_mistral
source ./.venv_llm_mistral/bin/activate
python -m pip install --upgrade pip
pip install "torch==2.7.1" "torchvision==0.22.1" "torchaudio==2.7.1" --index-url https://download.pytorch.org/whl/cu128
pip install transformers accelerate
python3 -c "import torch; print(torch.__version__); print(torch.cuda.is_available());print(torch.cuda.get_device_name(0));"

Build FlashAttention

pip install setuptools wheel
pip install packaging ninja
MAX_JOBS=4 pip install "flash-attn==2.6.3" --no-build-isolation
python3 -c "import flash_attn; print(flash_attn.__version__);"

Get the Mixtral-8x7B

git lfs install
git clone https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 mixtral

TESTs

Create script test_cuda_bnb4_fa_mixtral.py:

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from transformers import BitsAndBytesConfig
import torch
import flash_attn

print("GPU available:", torch.cuda.is_available())
print("GPU name:", torch.cuda.get_device_name(0))

model_path = "/home/sysadmin/llm/mixtral"

qconf = BitsAndBytesConfig(
    load_in_4bit=True, 
    bnb_4bit_quant_type='nf4', 
    bnb_4bit_use_double_quant=True, 
    bnb_4bit_compute_dtype=torch.float16
)

tokenizer = AutoTokenizer.from_pretrained(model_path)
model     = AutoModelForCausalLM.from_pretrained(
    model_path,
    quantization_config=qconf,
    torch_dtype=torch.float16,
    use_safetensors=True,
    attn_implementation="flash_attention_2",
    device_map={"": "cuda:0"}
)

prompt = """People love to know how fast (or slow) \
their computers are. We have always \
been interested in speed; it is human \
nature. To help us with this quest, \
we can use various benchmark test \
programs to measure aspects of processor \
and system performance. Although no \
single numerical measurement can \
completely describe the performance \
of a complex device such as a processor \
or a complete PC, benchmarks can be \
useful tools for comparing different \
components and systems."""

inputs = tokenizer(
    prompt,
    return_tensors="pt").to("cuda:0")

output_ids = model.generate(
    **inputs,
    max_new_tokens=10000,
)

print(tokenizer.decode(output_ids[0], skip_special_tokens=True))

Run test

Check nvidia-smi during the test while true; do nvidia-smi; sleep 1; done

python ./test_cuda_bnb4_fa_mixtral.py